mirror of
https://github.com/alexbelgium/hassio-addons.git
synced 2026-01-18 10:28:17 +01:00
Create spectrum_analysis.py
This commit is contained in:
59
birdnet-pi/rootfs/helpers/spectrum_analysis.py
Normal file
59
birdnet-pi/rootfs/helpers/spectrum_analysis.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
import scipy.io.wavfile as wavfile
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
import glob
|
||||
|
||||
# Define the directory containing the WAV files
|
||||
input_directory = '/tmp/StreamData'
|
||||
output_directory = '/config'
|
||||
|
||||
# Ensure the output directory exists
|
||||
if not os.path.exists(output_directory):
|
||||
os.makedirs(output_directory)
|
||||
|
||||
# Get a list of all WAV files in the input directory
|
||||
wav_files = glob.glob(os.path.join(input_directory, '*.wav'))
|
||||
|
||||
# Process each file
|
||||
for file_path in wav_files:
|
||||
# Load the WAV file
|
||||
sample_rate, audio_data = wavfile.read(file_path)
|
||||
|
||||
# If stereo, select only one channel
|
||||
if len(audio_data.shape) > 1:
|
||||
audio_data = audio_data[:, 0]
|
||||
|
||||
# Apply the Hamming window to the audio data
|
||||
hamming_window = np.hamming(len(audio_data))
|
||||
windowed_data = audio_data * hamming_window
|
||||
|
||||
# Compute the FFT of the windowed audio data
|
||||
audio_fft = np.fft.fft(windowed_data)
|
||||
audio_fft = np.abs(audio_fft)
|
||||
|
||||
# Compute the frequencies associated with the FFT values
|
||||
frequencies = np.fft.fftfreq(len(windowed_data), d=1/sample_rate)
|
||||
|
||||
# Select the range of interest
|
||||
idx = np.where((frequencies >= 150) & (frequencies <= 15000))
|
||||
|
||||
# Calculate the saturation threshold based on the bit depth
|
||||
bit_depth = audio_data.dtype.itemsize * 8
|
||||
max_amplitude = 2**(bit_depth - 1) - 1
|
||||
saturation_threshold = 0.8 * max_amplitude
|
||||
|
||||
# Plot the spectrum with a logarithmic Y-axis
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.semilogy(frequencies[idx], audio_fft[idx], label='Spectrum')
|
||||
plt.axhline(y=saturation_threshold, color='r', linestyle='--', label='Saturation Threshold')
|
||||
plt.xlabel("Frequency (Hz)")
|
||||
plt.ylabel("Amplitude (Logarithmic)")
|
||||
plt.title(f"Frequency Spectrum (150 - 15000 Hz) - {os.path.basename(file_path)}")
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
|
||||
# Save the plot as a PNG file
|
||||
output_filename = os.path.basename(file_path).replace('.wav', '_spectrum.png')
|
||||
plt.savefig(os.path.join(output_directory, output_filename))
|
||||
plt.close() # Close the figure to free memory
|
||||
Reference in New Issue
Block a user