mirror of
https://github.com/alexbelgium/hassio-addons.git
synced 2026-01-11 10:21:02 +01:00
Update DOCS.md
This commit is contained in:
@@ -393,26 +393,18 @@ Add this content in "$HOME/autogain.py" && chmod +x "$HOME/autogain.py"
|
||||
"""
|
||||
Microphone Gain Adjustment Script
|
||||
|
||||
This script captures audio from an RTSP stream using GStreamer if available,
|
||||
or falls back to ffmpeg if GStreamer is not installed. The script processes
|
||||
the audio to calculate the RMS within the 2000-4000 Hz frequency band and
|
||||
adjusts the microphone gain based on predefined noise thresholds and trends.
|
||||
This script captures audio from an RTSP stream, processes it to calculate the RMS
|
||||
within the 2000-4000 Hz frequency band, detects clipping, and adjusts the microphone
|
||||
gain based on predefined noise thresholds, trends, and clipping detection.
|
||||
|
||||
Dependencies:
|
||||
- numpy
|
||||
- scipy
|
||||
- ffmpeg or GStreamer (installed and accessible in PATH)
|
||||
- ffmpeg (installed and accessible in PATH)
|
||||
- amixer (for microphone gain control)
|
||||
|
||||
Author: OpenAI ChatGPT
|
||||
Date: 2024-04-27
|
||||
|
||||
Changelog:
|
||||
- 2024-04-27: Initial version of the script that captures RTSP stream, calculates RMS, and adjusts gain.
|
||||
- 2024-10-17: Added support for GStreamer as the preferred RTSP stream capture tool, with ffmpeg as a fallback.
|
||||
Implemented a debug log system to provide detailed logs with timestamps.
|
||||
Added trend-based microphone gain adjustment and noise RMS calculation.
|
||||
Enhanced error handling for both GStreamer and ffmpeg.
|
||||
"""
|
||||
|
||||
import subprocess
|
||||
@@ -429,6 +421,7 @@ MIN_GAIN_DB = 20 # Minimum gain in dB
|
||||
MAX_GAIN_DB = 45 # Maximum gain in dB
|
||||
DECREASE_GAIN_STEP_DB = 1 # Gain decrease step in dB
|
||||
INCREASE_GAIN_STEP_DB = 5 # Gain increase step in dB
|
||||
CLIPPING_REDUCTION_DB = 3 # Reduction in dB if clipping is detected
|
||||
|
||||
# Noise Thresholds
|
||||
NOISE_THRESHOLD_HIGH = 0.001 # Upper threshold for noise RMS amplitude
|
||||
@@ -445,6 +438,7 @@ DEBUG = 1
|
||||
|
||||
# -----------------------------------------------------------------------
|
||||
|
||||
|
||||
def debug(msg):
|
||||
"""
|
||||
Prints debug messages if DEBUG mode is enabled.
|
||||
@@ -466,6 +460,7 @@ def get_gain_db(mic_name):
|
||||
cmd = ['amixer', 'sget', mic_name]
|
||||
try:
|
||||
output = subprocess.check_output(cmd, stderr=subprocess.STDOUT).decode()
|
||||
# Regex to find patterns like [30.00dB]
|
||||
match = re.search(r'\[(-?\d+(\.\d+)?)dB\]', output)
|
||||
if match:
|
||||
gain_db = float(match.group(1))
|
||||
@@ -497,84 +492,29 @@ def set_gain_db(mic_name, gain_db):
|
||||
return False
|
||||
|
||||
|
||||
def check_gstreamer_available():
|
||||
def detect_clipping(audio):
|
||||
"""
|
||||
Checks if GStreamer is available on the system.
|
||||
Detects if clipping occurs in the audio signal.
|
||||
|
||||
:param audio: The audio signal as a numpy array.
|
||||
:return: True if clipping is detected, False otherwise.
|
||||
"""
|
||||
try:
|
||||
subprocess.check_call(['which', 'gst-launch-1.0'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
debug("GStreamer is available.")
|
||||
CLIPPING_THRESHOLD = 1.0 # Normalized PCM16 max value is ±1.0
|
||||
if np.any(audio >= CLIPPING_THRESHOLD) or np.any(audio <= -CLIPPING_THRESHOLD):
|
||||
debug("Clipping detected in audio signal.")
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
debug("GStreamer is not available.")
|
||||
return False
|
||||
return False
|
||||
|
||||
|
||||
def calculate_noise_rms_gstream(rtsp_url, bandpass_sos, num_bins=5):
|
||||
def calculate_noise_rms(rtsp_url, bandpass_sos, num_bins=5):
|
||||
"""
|
||||
Captures audio using GStreamer from an RTSP stream, applies a bandpass filter,
|
||||
divides the audio into segments, and calculates the RMS of the quietest segment.
|
||||
Captures audio from an RTSP stream, applies a bandpass filter, divides the
|
||||
audio into segments, and calculates the RMS of the quietest segment. Also detects clipping.
|
||||
|
||||
:param rtsp_url: The RTSP stream URL.
|
||||
:param bandpass_sos: Precomputed bandpass filter coefficients (Second-Order Sections).
|
||||
:param num_bins: Number of segments to divide the audio into.
|
||||
:return: The RMS amplitude of the quietest segment as a float, or None on failure.
|
||||
"""
|
||||
cmd = [
|
||||
'gst-launch-1.0',
|
||||
'rtspsrc', f'location={rtsp_url}', '!',
|
||||
'decodebin', '!', 'audioconvert', '!',
|
||||
'audioresample', '!', 'audio/x-raw,rate=32000,channels=1',
|
||||
'!', 'filesink', 'location=/dev/stdout'
|
||||
]
|
||||
|
||||
try:
|
||||
debug(f"Starting GStreamer audio capture from {rtsp_url}")
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout, stderr = process.communicate()
|
||||
|
||||
if process.returncode != 0:
|
||||
debug(f"GStreamer failed with error: {stderr.decode()}")
|
||||
return None
|
||||
|
||||
audio = np.frombuffer(stdout, dtype=np.int16).astype(np.float32) / 32768.0
|
||||
debug(f"Captured {len(audio)} samples from GStreamer.")
|
||||
|
||||
if len(audio) == 0:
|
||||
debug("No audio data captured.")
|
||||
return None
|
||||
|
||||
filtered = sosfilt(bandpass_sos, audio)
|
||||
debug("Applied bandpass filter to audio data.")
|
||||
total_samples = len(filtered)
|
||||
bin_size = total_samples // num_bins
|
||||
|
||||
if bin_size == 0:
|
||||
debug("Bin size is 0; insufficient audio data.")
|
||||
return 0.0
|
||||
|
||||
trimmed_filtered = filtered[:bin_size * num_bins]
|
||||
segments = trimmed_filtered.reshape(num_bins, bin_size)
|
||||
debug(f"Divided audio into {num_bins} bins of {bin_size} samples each.")
|
||||
rms_values = np.sqrt(np.mean(segments ** 2, axis=1))
|
||||
min_rms = rms_values.min()
|
||||
debug(f"Minimum RMS value among segments: {min_rms}")
|
||||
return min_rms
|
||||
|
||||
except Exception as e:
|
||||
debug(f"Exception during noise RMS calculation with GStreamer: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def calculate_noise_rms_ffmpeg(rtsp_url, bandpass_sos, num_bins=5):
|
||||
"""
|
||||
Captures audio using FFmpeg from an RTSP stream, applies a bandpass filter,
|
||||
divides the audio into segments, and calculates the RMS of the quietest segment.
|
||||
|
||||
:param rtsp_url: The RTSP stream URL.
|
||||
:param bandpass_sos: Precomputed bandpass filter coefficients (Second-Order Sections).
|
||||
:param num_bins: Number of segments to divide the audio into.
|
||||
:return: The RMS amplitude of the quietest segment as a float, or None on failure.
|
||||
:return: Tuple containing the RMS amplitude of the quietest segment and a boolean indicating clipping.
|
||||
"""
|
||||
cmd = [
|
||||
'ffmpeg',
|
||||
@@ -591,68 +531,73 @@ def calculate_noise_rms_ffmpeg(rtsp_url, bandpass_sos, num_bins=5):
|
||||
]
|
||||
|
||||
try:
|
||||
debug(f"Starting FFmpeg audio capture from {rtsp_url}")
|
||||
debug(f"Starting audio capture from {rtsp_url}")
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout, stderr = process.communicate()
|
||||
|
||||
if process.returncode != 0:
|
||||
debug(f"FFmpeg failed with error: {stderr.decode()}")
|
||||
return None
|
||||
debug(f"ffmpeg failed with error: {stderr.decode()}")
|
||||
return None, False
|
||||
|
||||
# Convert raw PCM data to numpy array
|
||||
audio = np.frombuffer(stdout, dtype=np.int16).astype(np.float32) / 32768.0
|
||||
debug(f"Captured {len(audio)} samples from FFmpeg.")
|
||||
debug(f"Captured {len(audio)} samples from audio stream.")
|
||||
|
||||
if len(audio) == 0:
|
||||
debug("No audio data captured.")
|
||||
return None
|
||||
return None, False
|
||||
|
||||
# Check for clipping
|
||||
is_clipping = detect_clipping(audio)
|
||||
|
||||
# Apply bandpass filter
|
||||
filtered = sosfilt(bandpass_sos, audio)
|
||||
debug("Applied bandpass filter to audio data.")
|
||||
|
||||
# Divide into num_bins
|
||||
total_samples = len(filtered)
|
||||
bin_size = total_samples // num_bins
|
||||
|
||||
if bin_size == 0:
|
||||
debug("Bin size is 0; insufficient audio data.")
|
||||
return 0.0
|
||||
return 0.0, is_clipping
|
||||
|
||||
trimmed_filtered = filtered[:bin_size * num_bins]
|
||||
trimmed_length = bin_size * num_bins
|
||||
trimmed_filtered = filtered[:trimmed_length]
|
||||
segments = trimmed_filtered.reshape(num_bins, bin_size)
|
||||
debug(f"Divided audio into {num_bins} bins of {bin_size} samples each.")
|
||||
|
||||
# Calculate RMS for each segment
|
||||
rms_values = np.sqrt(np.mean(segments ** 2, axis=1))
|
||||
debug(f"Calculated RMS values for each segment: {rms_values}")
|
||||
|
||||
# Return the minimum RMS value and clipping status
|
||||
min_rms = rms_values.min()
|
||||
debug(f"Minimum RMS value among segments: {min_rms}")
|
||||
return min_rms
|
||||
|
||||
return min_rms, is_clipping
|
||||
|
||||
except Exception as e:
|
||||
debug(f"Exception during noise RMS calculation with FFmpeg: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def calculate_noise_rms(rtsp_url, bandpass_sos, num_bins=5):
|
||||
"""
|
||||
Attempts to capture audio from an RTSP stream using GStreamer first,
|
||||
and falls back to FFmpeg if GStreamer is unavailable.
|
||||
"""
|
||||
if check_gstreamer_available():
|
||||
return calculate_noise_rms_gstream(rtsp_url, bandpass_sos, num_bins)
|
||||
else:
|
||||
return calculate_noise_rms_ffmpeg(rtsp_url, bandpass_sos, num_bins)
|
||||
debug(f"Exception during noise RMS calculation: {e}")
|
||||
return None, False
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main loop that continuously monitors background noise and adjusts microphone gain.
|
||||
Main loop that continuously monitors background noise, detects clipping, and adjusts microphone gain.
|
||||
"""
|
||||
TREND_COUNT = 0
|
||||
PREVIOUS_TREND = 0
|
||||
|
||||
LOWCUT = 2000
|
||||
HIGHCUT = 4000
|
||||
FILTER_ORDER = 5
|
||||
# Precompute the bandpass filter coefficients
|
||||
LOWCUT = 2000 # Lower frequency bound in Hz
|
||||
HIGHCUT = 8000 # Upper frequency bound in Hz
|
||||
FILTER_ORDER = 5 # Order of the Butterworth filter
|
||||
|
||||
sos = butter(FILTER_ORDER, [LOWCUT, HIGHCUT], btype='band', fs=44100, output='sos')
|
||||
debug("Precomputed Butterworth bandpass filter coefficients.")
|
||||
|
||||
# Set the microphone gain to the maximum gain at the start
|
||||
success = set_gain_db(MICROPHONE_NAME, MAX_GAIN_DB)
|
||||
if success:
|
||||
print(f"Microphone gain set to {MAX_GAIN_DB} dB at start.")
|
||||
@@ -661,16 +606,40 @@ def main():
|
||||
return
|
||||
|
||||
while True:
|
||||
min_rms = calculate_noise_rms(RTSP_URL, sos, num_bins=5)
|
||||
min_rms, is_clipping = calculate_noise_rms(RTSP_URL, sos, num_bins=5)
|
||||
|
||||
if min_rms is None:
|
||||
print("Failed to compute noise RMS. Retrying in 1 minute...")
|
||||
time.sleep(60)
|
||||
continue
|
||||
|
||||
if not isinstance(min_rms, (float, int)):
|
||||
print(f"Invalid noise RMS output detected: {min_rms}. Retrying in 1 minute...")
|
||||
time.sleep(60)
|
||||
continue
|
||||
|
||||
# Print the final converted RMS amplitude (only once)
|
||||
print(f"Converted RMS Amplitude: {min_rms}")
|
||||
debug(f"Current background noise (RMS amplitude): {min_rms}")
|
||||
|
||||
# Detect clipping and reduce gain if needed
|
||||
CURRENT_GAIN_DB = get_gain_db(MICROPHONE_NAME)
|
||||
|
||||
if is_clipping:
|
||||
NEW_GAIN_DB = CURRENT_GAIN_DB - CLIPPING_REDUCTION_DB
|
||||
if NEW_GAIN_DB < MIN_GAIN_DB:
|
||||
NEW_GAIN_DB = MIN_GAIN_DB
|
||||
success = set_gain_db(MICROPHONE_NAME, NEW_GAIN_DB)
|
||||
if success:
|
||||
print(f"Clipping detected. Reduced gain to {NEW_GAIN_DB} dB")
|
||||
debug(f"Gain reduced to {NEW_GAIN_DB} dB due to clipping.")
|
||||
else:
|
||||
print("Failed to reduce gain due to clipping.")
|
||||
# Skip trend adjustment in case of clipping
|
||||
time.sleep(60)
|
||||
continue
|
||||
|
||||
# Determine the noise trend
|
||||
if min_rms > NOISE_THRESHOLD_HIGH:
|
||||
CURRENT_TREND = 1
|
||||
elif min_rms < NOISE_THRESHOLD_LOW:
|
||||
@@ -691,17 +660,9 @@ def main():
|
||||
|
||||
debug(f"Trend count: {TREND_COUNT}")
|
||||
|
||||
CURRENT_GAIN_DB = get_gain_db(MICROPHONE_NAME)
|
||||
|
||||
if CURRENT_GAIN_DB is None:
|
||||
print("Failed to get current gain level. Retrying in 1 minute...")
|
||||
time.sleep(60)
|
||||
continue
|
||||
|
||||
debug(f"Current gain: {CURRENT_GAIN_DB} dB")
|
||||
|
||||
if TREND_COUNT >= TREND_COUNT_THRESHOLD:
|
||||
if CURRENT_TREND == 1:
|
||||
# Decrease gain by 1 dB
|
||||
NEW_GAIN_DB = CURRENT_GAIN_DB - DECREASE_GAIN_STEP_DB
|
||||
if NEW_GAIN_DB < MIN_GAIN_DB:
|
||||
NEW_GAIN_DB = MIN_GAIN_DB
|
||||
@@ -712,6 +673,7 @@ def main():
|
||||
else:
|
||||
print("Failed to set new gain.")
|
||||
elif CURRENT_TREND == -1:
|
||||
# Increase gain by 5 dB
|
||||
NEW_GAIN_DB = CURRENT_GAIN_DB + INCREASE_GAIN_STEP_DB
|
||||
if NEW_GAIN_DB > MAX_GAIN_DB:
|
||||
NEW_GAIN_DB = MAX_GAIN_DB
|
||||
@@ -725,6 +687,7 @@ def main():
|
||||
else:
|
||||
debug("No gain adjustment needed.")
|
||||
|
||||
# Sleep for 1 minute before the next iteration
|
||||
time.sleep(60)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user